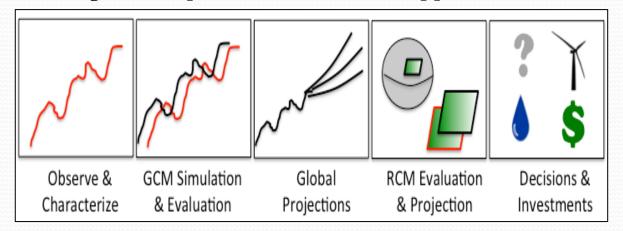
# Multi-RCM CORDEX-Africa Hindcast Evaluation using the JPL Regional Climate Model Evaluation System (RCMES)

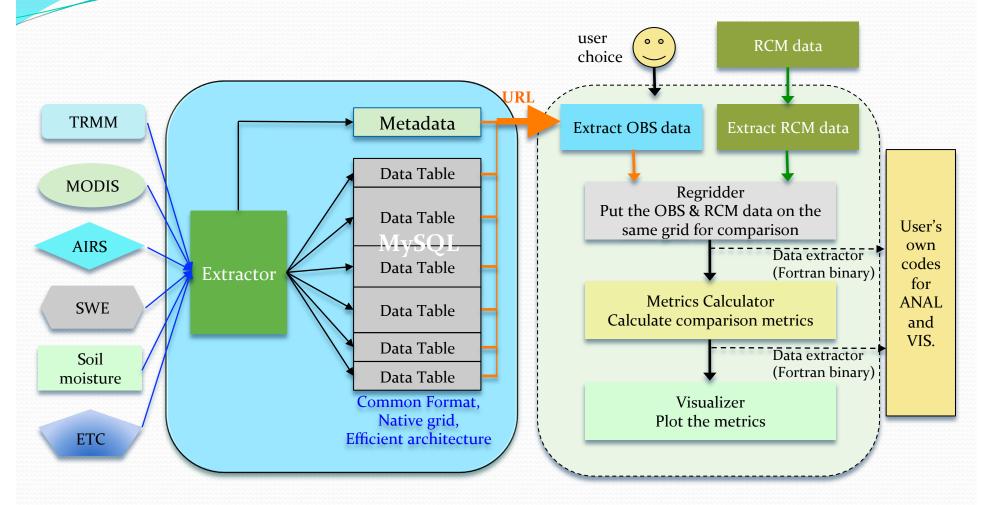

J. Kim¹, D.E. Waliser¹,², C. Mattmann², C. Goodale², A. Hart², P. Zimdars², C. Jones³, G. Nikulin³, B. Hewitson⁴, C. Jack⁴, C. Lennard⁴, and A. Favre⁴,

- 1: Joint Institute for Regional Earth System Sci. and Eng./UCLA
- <sup>2</sup>: Jet Propulsion Laboratory/NASA
- 3: Rossby Centre, Sweden
- 4: University of Cape Town, RSA



## **Regional Climate Model Evaluation**

- Studies have confirmed with high level of confidence that the emissions of anthropogenic greenhouse gases have induced the ongoing global warming trend.
- Assessment of the impacts of global climate change on regional sectors (e.g., water resources, agriculture, and ecosystems) have become an important concern.
- Assessing climate change impact on regional sectors requires fine-scale climate data.
- Regional climate models (RCMs) are key to downscaling GCM projections to the spatial scales relevant for regional impact assessments to support decision making.




- Evaluating climate models against "observations" is a key for model improvements and developing the methodology for applying model projections to impact assessments.
- Systematic evaluations of GCMs have been undertaken for some time (e.g., AMIP, CMIP); this is not the case for RCMs.

# JPL Regional Climate Model Evaluation System (RCMES) Using Satellite & Other Observations For RCM Evaluation

- NASA can provide critical and unique observational and technological resources to facilitate RCM evaluations and thus make key contributions to the climate-change impact assessment processes.
- Observational data are a key part of model evaluation
  - Typical model evaluation is performed by comparing the simulated and reference data in terms of statistical metrics.
  - Reference data are obtained from direct/indirect observations, analysis of observed data and/or assimilations based on observed data.
  - Easy access to *quality reference data* can facilitate evaluation efforts.
  - The lack of *fine-scale observations* is among the key difficulties in evaluating today's RCM simulations.
- To facilitate RCM evaluation, especially for easy access to remote sensing data, RCMES has been under development via joint JPL-UCLA efforts.

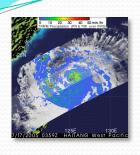
# High-level technical architecture



#### **Raw Data:**

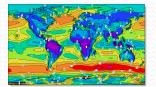
Various formats, Resolutions, Coverage

#### **RCMED**


(Regional Climate Model Evaluation Database)
A large scalable database to store data from
variety of sources in a common format

#### **RCMET**

(Regional Climate Model Evaluation Toolkit)
A library of codes for extracting data from
RCMED and model and for calculating
evaluation metrics


### **RCMES Database (RCMED)**

### Current & near-future archives



### RCMED Datasets (now or near-term):

- MODIS (satellite cloud fraction): [daily 2000 2010]
- TRMM (satellite precipitation): 3B42 & version-7 [daily 1998–2010]
- AIRS (satellite surface + T & q profiles) [daily 2002 2010]
- ERA-Interim (reanalysis): [daily 1989 2010]



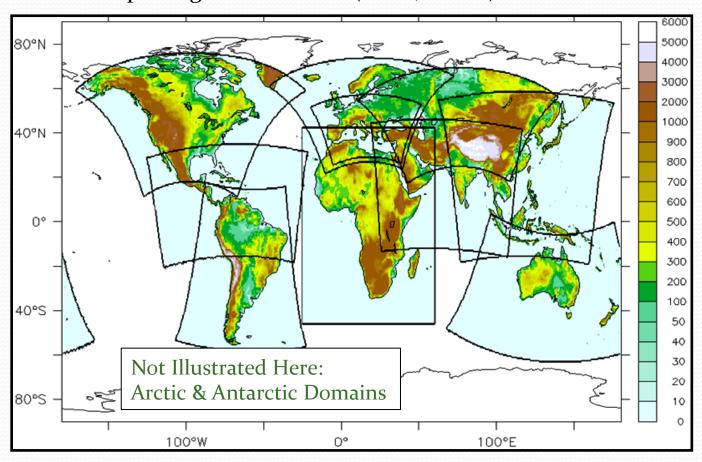
- NCEP CPC Raingauge analysis (gridded precipitation): [daily 1948 2011]
- CRU: 3.0 & 3.1, prcp, T<sub>AVG</sub>, T<sub>MAX</sub>, T<sub>MIN</sub>, cloud frac. [monthly 1901 2006]
- Snow Water Equivalent: NOHRSC, JPL [daily & monthly 2000-2010]
- NASA MERRA Land Surface Assimilation [daily, 1979-2008]
- ......CERES-radiation, CloudSat, MISR/MODIS-aerosol, etc



### **RCMET Metrics & visualization:**



- RMS error
- Anomaly Correlation (e.g., spatial patterns)
- PDFs (likelihoods, extremes and their changes)
- Statistical Tests
- User-defined regions (e.g. watershed, airshed, desert, sea, political)
- Maps, Taylor Plots & Portrait Diagrams (overall model performance)




## Current status and future development direction

- RCMES is in the prototyping stage
- RCMES development is focused on:
  - Efficiency
    - Fast access to the reference datasets
  - User friendliness
    - Intuitive and platform-transferrable GUI
  - Flexibility
    - Extractors for multiple data formats (netCDF, HDF, Grib, Ascii)
  - Expandability
    - Easy to add new data and/or analysis tool
    - Apache Hadoop and MySQL are used to provide scalable storage solution
    - Cloud-based architecture for storage and user interface is explored

### Near-term applications to WCRP's CORDEX for IPCC

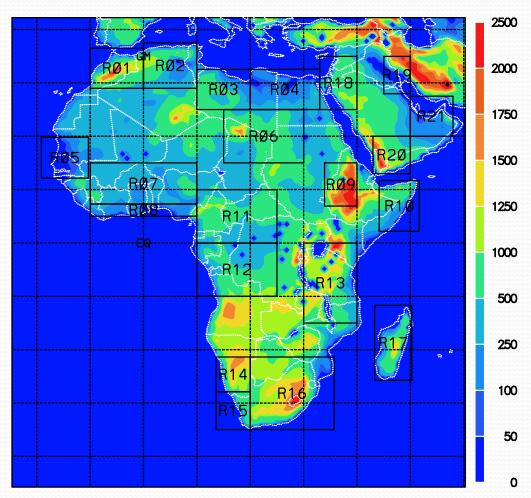
- Africa: Collaboration & analysis ongoing (UCT, Rossby Centre)
- N. America: Funded via NASA for U.S. NCA (NCAR, NARCCAP)
- Arctic: Exploring collaboration (J. Cassano, March 2012 Workshop)
- E. Asia: Exploring collaboration (KMA, APCC)



### **Evaluation of the CORDEX-Africa Multi-RCM Hindcast**

- The JPL-UCLA team is collaborating with scientists at UCT and Rossby Centre to apply RCMES to evaluating the multi-RCM CORDEX-Africa hindcast experiment
- Monthly data from 11-RCM, 20-year (1989-2008) hindcast on a common grid are obtained from the Rossby Centre
  - Some models are excluded due to incomplete/missing data.
  - Evaluation periods are limited due to the coverage of reference datasets.
- Evaluations are performed for the monthly values of:
  - Precipitation, T2<sub>AVG</sub>, T2<sub>MAX</sub>, T2<sub>MIN</sub>, Cloud Fraction
- Reference data used:
  - Precipitation: TRMM.v6 (1998-present, 0.25deg), CRU3.1 (1901-2006, 0.5deg)
  - T2, T2Min, T2Max: CRU3.1 (1901-2006, 0.5deg).
  - Cloud fraction: CRU3.1, MODIS retrieval (2001-present, 1 deg).

# RCMs and Variables Evaluated in this Study

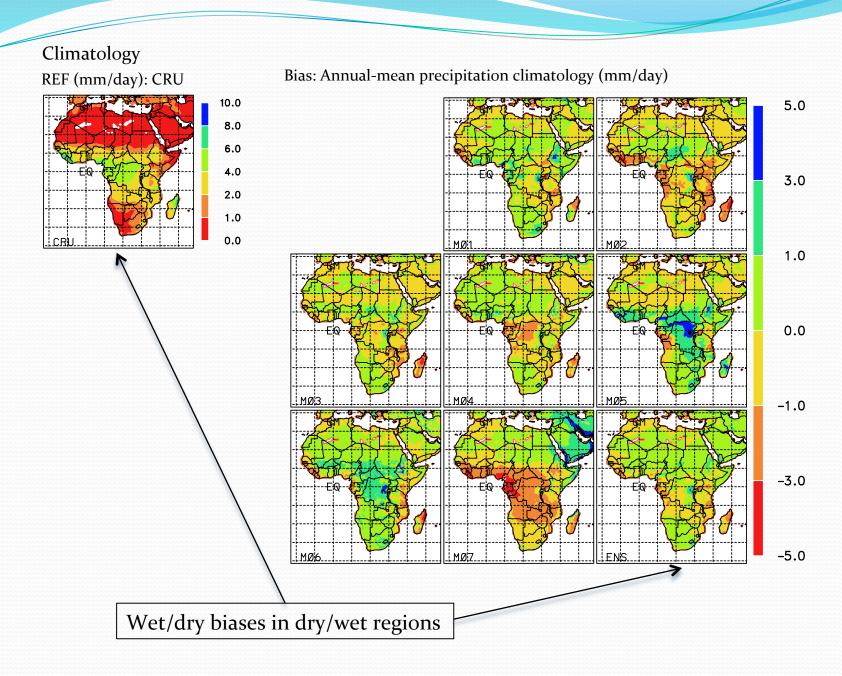

| ID              | Institution | Variable<br>Model  | PRECIP | T <sub>MEAN</sub> | T <sub>MIN</sub> | T <sub>MAX</sub> | Cloudiness |
|-----------------|-------------|--------------------|--------|-------------------|------------------|------------------|------------|
| Мо1             | CNRM        | ARPEGE51           | 0      | 0                 | 0                | 0                | 0          |
| Мо2             | DMI         | HIRHIM             | 0      | 0                 | 0                | 0                | 0          |
| Моз             | ICTP        | RegCM <sub>3</sub> | 0      | 0                 | 0                | 0                | 0          |
| Mo <sub>4</sub> | IES         | CCLM               | 0      | 0                 | 0                | 0                | 0          |
| Мо5             | KNMI        | RACM02.2b          | 0      | О                 | 0                | 0                | 0          |
| Мо6             | MPI         | REMO               | 0      | 0                 | 0                | 0                | 0          |
| Mo <sub>7</sub> | SMHI        | RCA <sub>35</sub>  | 0      | О                 | 0                | 0                | 0          |
| Mo8             | UCT         | PRECIS             | O      | О                 | 0                | 0                | 0          |
| Мо9             | UC          | WRF311             | 0      | 0                 | 0                | 0                | X          |
| М10             | UQAM        | CRCM5              | O      | 0                 | 0                | 0                | 0          |
| М11             | n/a         | ENS                | 0      | 0                 | 0                | 0                | 0          |

• Precipitation: 10 RCMs

• T2 fields: 10 RCMs

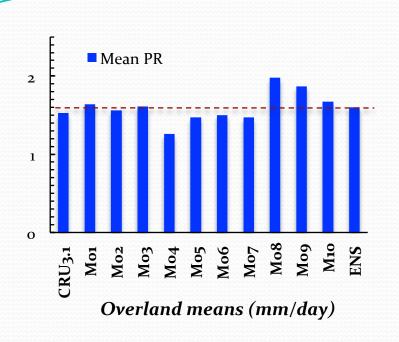
• Cloudiness: 9 RCMs

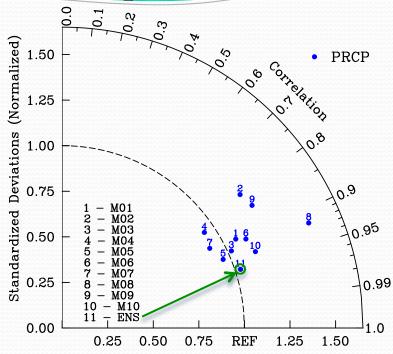
# with 21 subregions




- The domain covers the African continent with a 0.44°-resolution grid mesh
- All RCM data have been interpolated onto the same domain by SMHI.
- 21 sub-regions (Ro1-R21) are selected to investigate regions of interests.

## [1] Precipitation evaluation 10 RCMs and their ensemble vs. CRU raingauge analysis

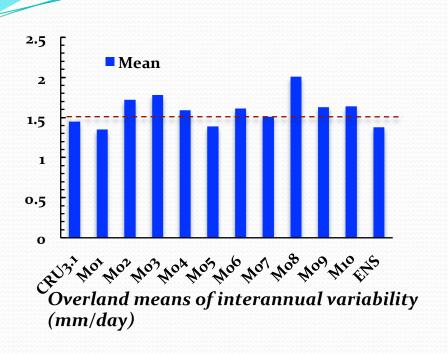

- 18 years: 1990-2007
  - 1989 & 2008 are dropped to include the maximum number of RCMs
- Overland and sub-regions
- Annual climatology
- Interannual variability in terms of temporal standard deviation
- Annual cycle in each subregion

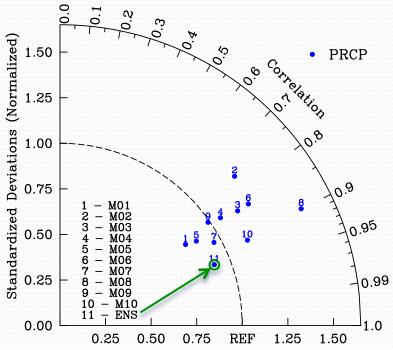

# Annual overland precipitation climatology



### **Metrics and Visualization**

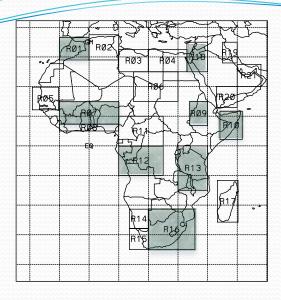
Spatial Variability of the Overland Precipitation Climatology



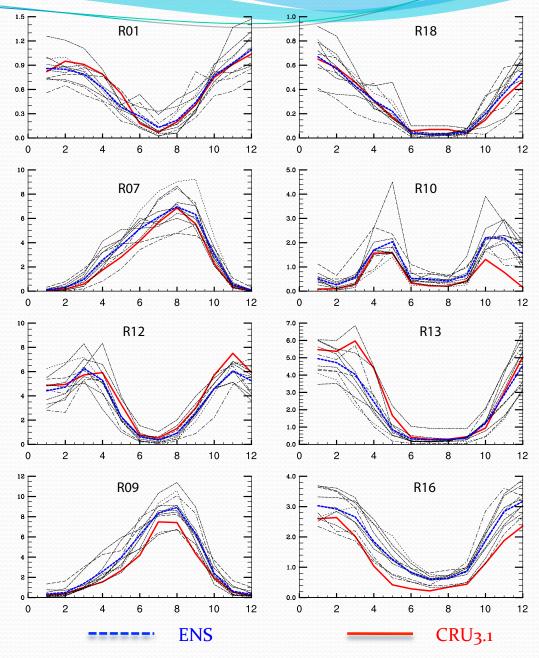




- Attempt to objectively measure the model performances
- Most RCMs simulate precipitation climatology with reasonable *overland totals* and *spatial pattern* compared to the CRU analysis.
- Spatial variability varies widely according to RCMs.
- The model ensemble compares well with the CRU analysis:
  - smallest in bias and RMSE and highest spatial pattern correlation
  - Spatial variability is smaller than most models, but comparable to the CRU data.

### **Metrics and Visualization**

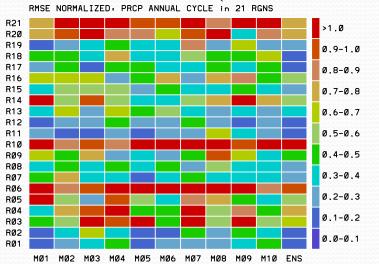

## Spatial Variations in Overland Prcp Interannual Variability



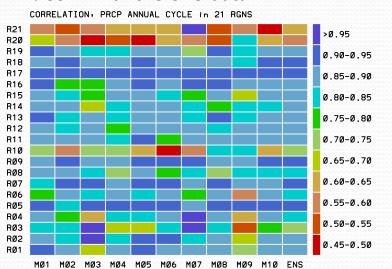



- The interannual variability of overland precipitation is measured in terms of temporal standard deviation over the 18-yr period.
- RCMs generally overestimate the interannual variability in the CRU data.
- Model ensemble is among the few that underestimate the interannual variability.
- The model ensemble compares well with the CRU analysis for the estimation of the interannual variability. It yields:
  - *Smallest RMSE* (smaller than any model in the ensemble)
  - Highest spatial pattern correlation

### Precipitation Annual Cycle (mm/day) in 8 subregions




- RCM performance in simulating precip annual cycle vary widely
- *Model ensemble* performs well in a number of regions
  - Mediterranean regions
  - Western AF monsoon
- Systematic biases occur in some regions
  - Eastern RSA (R16) all year
  - Eastern Africa (R<sub>13</sub>) in austral fall
  - Somalia (R10) in boreal winter



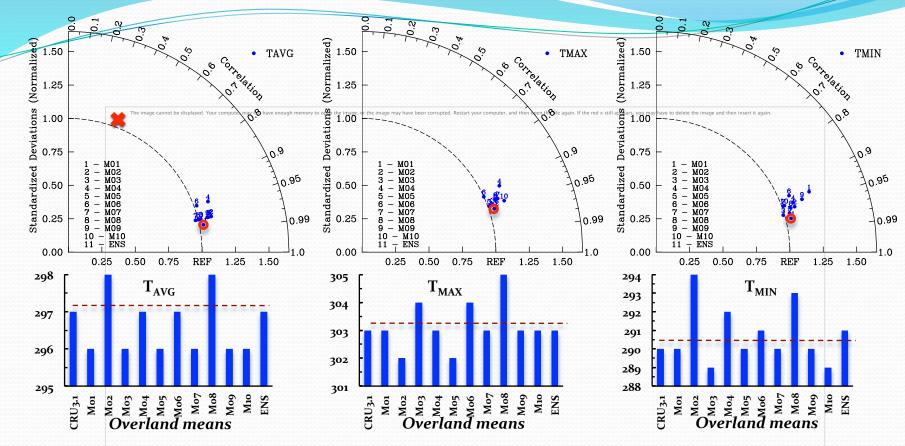

# Metrics and Visualization Precipitation Annual Cycle (mm/day) in Subregions

### PR: Normalized RMSE (Frac of ann mean).



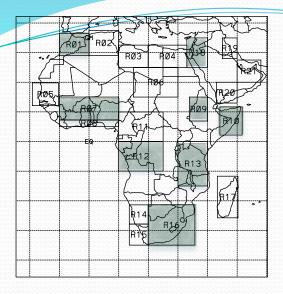
#### PR: Corr. with the CRU data

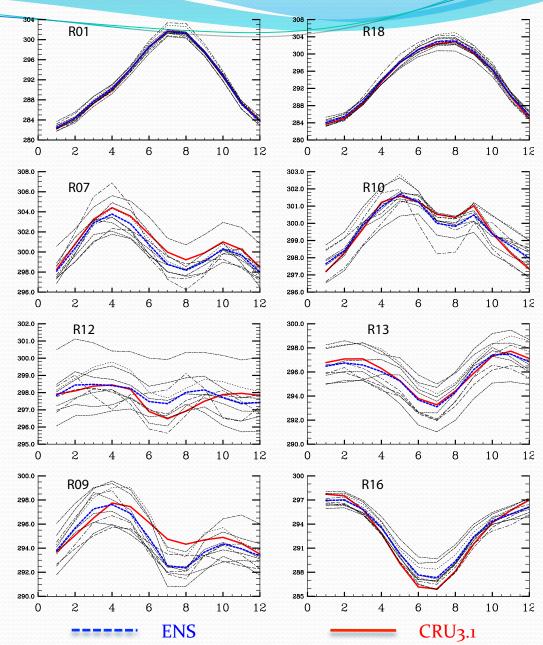



Compare the performance of multiple models using "portrait diagram".

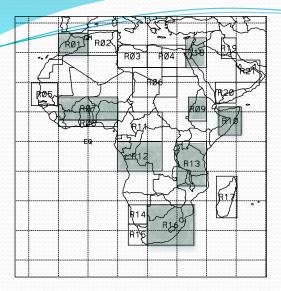
- Model performance varies widely according to regions as well as models.
  - RCMs generally well simulates the precipitation annual cycle in the western Mediterranean coast (Ro1 & Ro2), Eq. W. Africa (R11 & R12), and Madagascar (R17).
  - All models perform poorly for the E.
     Mediterranean (Ro<sub>3</sub> & Ro<sub>4</sub>), E. Sahara (Ro<sub>6</sub>) and the three regions in the E. Africa (R<sub>10</sub>) and southern Arabian Peninsula (R<sub>20</sub> & R<sub>21</sub>).
  - The region dependence suggests systematic biases either in large-scale forcing data or model formulations or both.
- The model ensemble is among the best performers
  - smallest in RMSE and highest in corr.

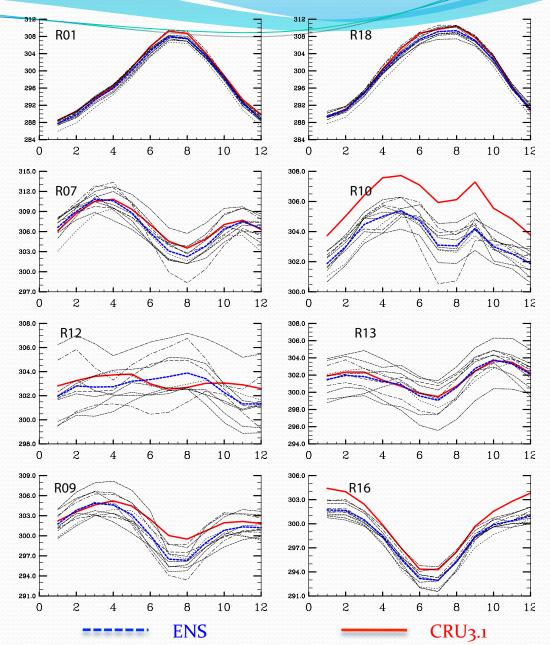
## [2] 2-m air temperature fields evaluation 10 RCMs and their ensemble vs. CRU3.1 surface station analysis


- 18 years: 1990-2007
- Overland only
- Annual T2Mean, T2Min, and T2Max climatology
- Interannual variability in terms of the temporal standard deviations
- Annual cycle in subregions.

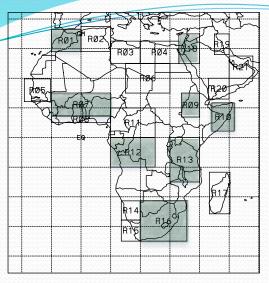

# Spatial Variability of the T2 Climatology



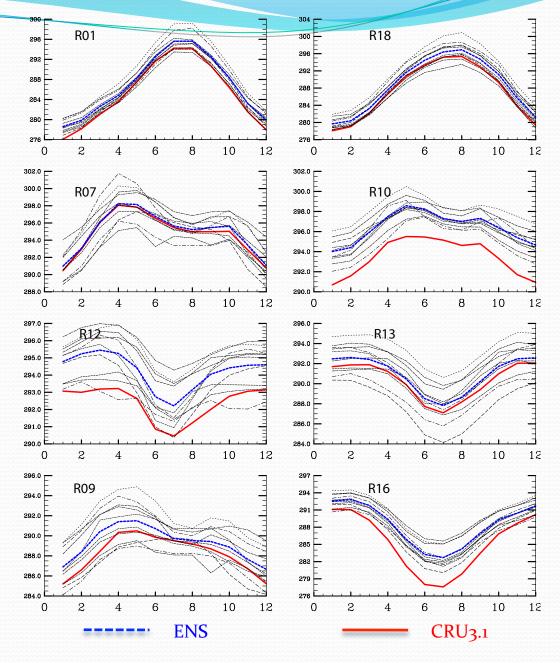

- Model performs somewhat better in simulating the daily means than the daily max/min values
- Inter-RCM variations in the spatial pattern (correlation) and variability (standardized deviation) is much smaller than for precipitation.
- Model ensemble again performs collectively well compared to individual models
  - Smallest RMSE & bias with highest correlation


# Spatial Variability of the T2<sub>MIN</sub> Climatology

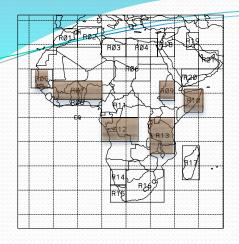





# Spatial Variability of the T2<sub>MAX</sub> Climatology

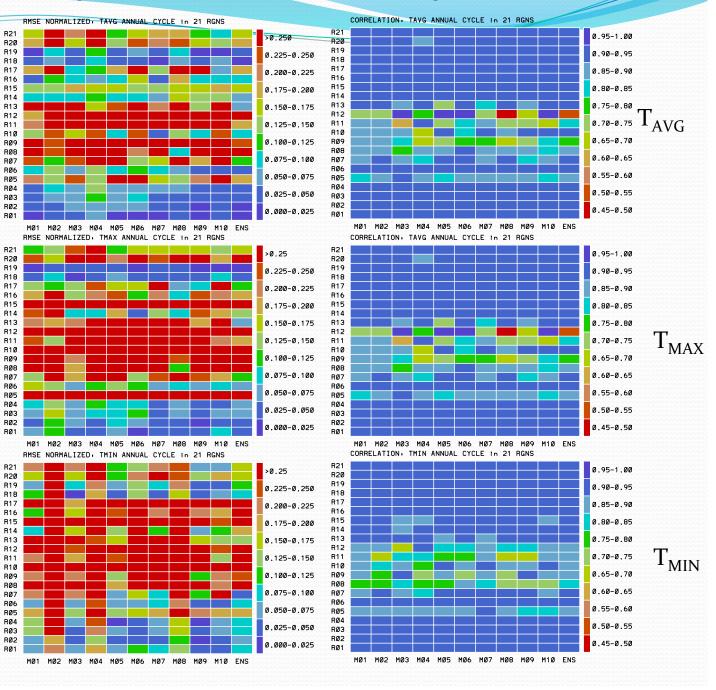






# Spatial Variability of the T2<sub>MIN</sub> Climatology



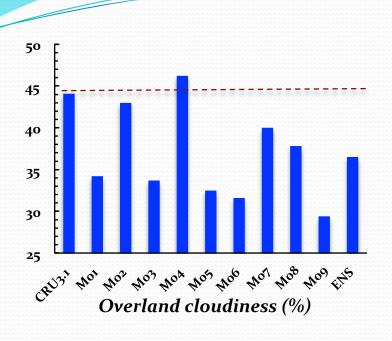
- RCM performance varies widely.
- Performance of the RCM ensemble is somewhat better in higher latitude regions than near the Equator for T2<sub>AVG</sub>.
- Performance of *RCMs* and their ensemble are generally lower for daily extremes than daily means.
- Typical bias in the model ensemble is under/overestimation of daily max/min temperatures
  - This bias will result in underestimation of the amplitude of temperature diurnal cycle.

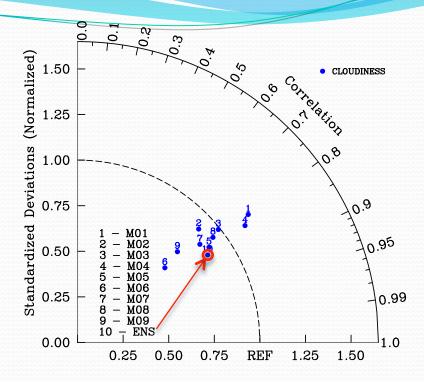



### **Annual Cycle: Normalized RMSE** Annual Cycle: Correlation



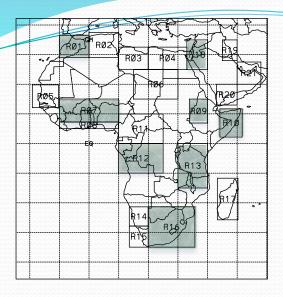
### Normalization by the annual cycle amplitude of the CRU data


NRMSE = 
$$\frac{\frac{1}{12} \sqrt{\sum_{m=JAN}^{m=DEC} \left(T_m^{MODEL} - T_m^{OBS}\right)^2}}{\left(T_{max}^{OBS} - T_{min}^{OBS}\right)}$$

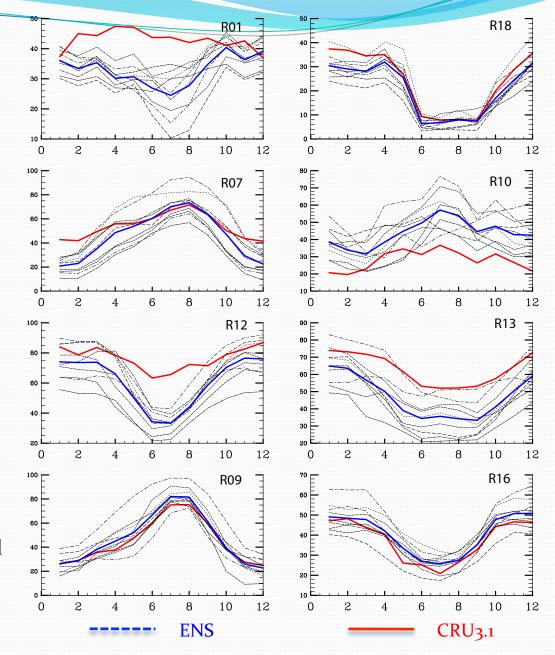



# [3] Cloudiness Nine RCMs and their ensemble vs. CRU3.1 analysis

- 18 years: 1990-2007
- CRU3.1 cloudiness data, 0.5°x0.5°, Global overland coverage

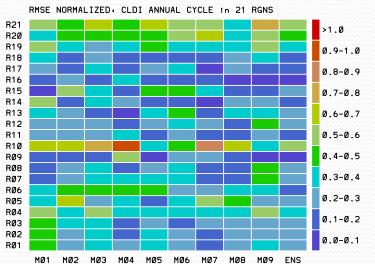

### Overland Cloudiness Climatology (1990-2007): RCMs vs. CRU3.1



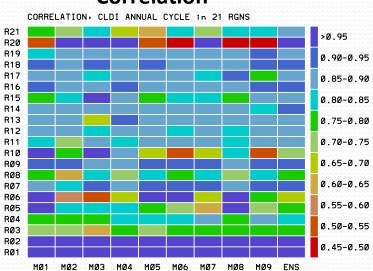


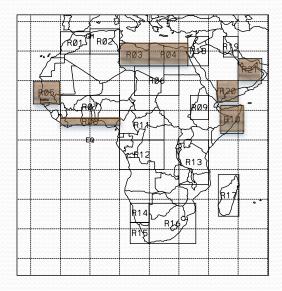

- Most RCMs underestimate the cloudiness in the CRU analysis
  - Model errors range from -14.7% (or -33% of CRU) to +5.1% (or +11.6% of CRU)
- All models generate consistent spatial pattern with spatial corr coef > 0.8.
- Most RCMs underestimate spatial variability (only Mo1 and Mo4 exceed the CRU value).
- The model ensemble generally agree more closely with the REF data than individual models.
  - among the smallest in bias and RMSE against the CRU data.
  - the highest spatial correlation with the CRU data.
  - Model ensemble is among those which underestimate the spatial variability most.

### Mean Cloudiness Annual Cycle: CRU vs. RCMs (1990-2007)




- RCM skill in simulating the annual cycle of cloudiness varies widely according to the region.
  - Good performance in R<sub>1</sub>8, R<sub>7</sub>, R<sub>9</sub>, and R<sub>1</sub>6.
  - Poor performance in Ro1, R10, R12, and R13
  - Difficult to find geographical reference for model performance.





# Cloudiness Annual Cycle in 21 Sub-regions

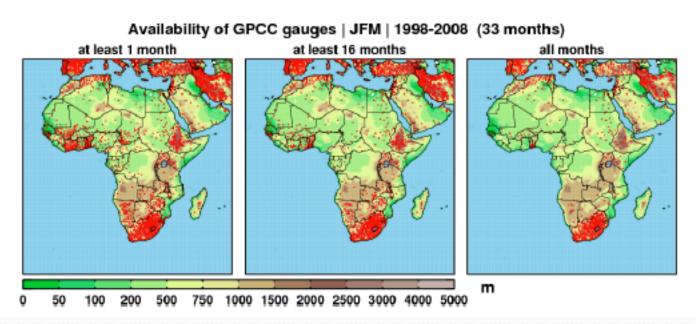




### Correlation



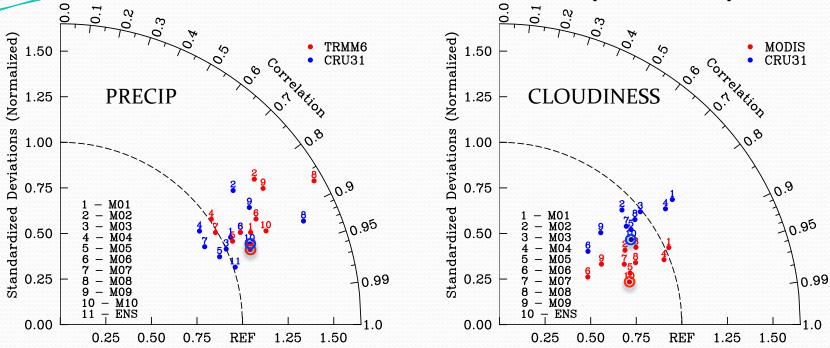



- RCMs may perform better in simulating seasonal cycle, measured in terms of the normalized RMSE and correlation, in the S. hemisphere and equatorial regions than in the N. hemisphere.
- However, it is difficult to link these errors shown in the annual cycle plot (previous page) with these metrics.
  - Model errors are large, but
  - The seasonal cycle is in phase with the obs
  - The RCMs generally yields larger annual cycle amplitudes than the CRU data.

# [4] Uncertainties related with observational datasets

• Precipitation evaluation against TRMM and CRU analysis

### **GPCC Gauge Distribution within Africa**


(Nikulin et al., under preparation)



- Gauge density and distribution is a key concern for the accuracy of the reference data
- The density and observation length of gauges vary substantially according to geopolitical regions within Africa.
- Gridded station data (e.g., CRU) suffer directly from the lack of gauges
- Remote sensing data (e.g., TRMM, GPCP) also suffers from the lack of gauges because remote sensing data are calibrated using the gauge values.
- This problem necessitates the use of multiple reference datasets in model evaluations

## Precipitation: RCMs vs. TRMM & CRU3.1 (1998-2007)

Cloudiness: RCM vs. CRU and MODIS (2001-2007)



- The simulated precipitation & cloudiness is evaluated against two REF data.
- TRMM and CRU31 result in similar evaluation of precipitation.
  - The simulation shows similar spatial correlations with CRU & TRMM
  - Systematically larger spatial variability w.r.t. the TRMM than CRU
- Cloudiness evaluation varies systematically according to the reference data:
  - Systematically higher spatial correlation with the MODIS data than the CRU data
  - Scaled STD is larger with the CRU than MODIS.
- Inter-comparison of reference data may be necessary.

## **Summary**

- Evaluation of climate models is a fundamental step in projecting climate variations and change and assessing their impacts.
- RCMES has been under development at JPL to facilitate RCM evaluation
  - User friendly, flexible, and expandable
- Monthly precip, 2-m air temperatures and cloudiness from multiple RCMs participating in the CORDEX-Africa experiment are evaluated.
  - All RCMs successfully simulate qualitative features of the observed climatology.
  - Performance of individual models vary widely.
  - Ensembles of all RCMs are generally closer to the reference data than individual RCM, especially in the climatological means, with small biases and large pattern correlations.
  - Evaluation of cloudiness is difficult to quantify.
- Care must be taken in estimating variability using model ensembles
  - Model ensemble may systematically underestimate temporal variability.
- Differences between REF datasets may be a source of uncertainties.
  - REF datasets need be cross-examined.
- Use of intuitive visualization tool such as Taylor diagram and Portrait diagram facilitates the evaluation of relative performance of multiple models for multiple properties.